De Mazenod College Kandana A/L ICT Colle Kandana A/Mazenod Kandana Mazenod Mazenod Kandana Mazenod Kandana A/L ICT College Ka ICT De N ## De Mazenod College Kandana ## **Information and Communication Technology** 1st Term Test 26th November 2018 Grade 12 Time: 3Hours Name: No Class. College Kandana A/L ICT De iviazenou coilege Kandana A/L ICT De iviazenou coilege Kandana A/L ICT De iviazenou coilege Kandana A/L ICT De Mazenou College Ka 2 Answer all questions and show relevant calculations for each answer otherwise no marks are allocated. | | • | |----|--| | 1. | Which one of the following is/are equal to 131200 ₁₀ | | | $(1)4002000_8$ | | | $(2)200800_{16}$ | | | (3)100000000010000002 | | | (4)1000000100000000000000000000000000000 | | | $(5)100000000100000000_2$ | | 2. | Which one of the following is / are not equal to 10000000001001 | | | $(1)8201_{10}$ | | | $(2)2009_{16}$ | | | $(3)20011_8$ | | | $(4)200B_{16}$ | | | $(5)1000000001001.00_2$ | | 3. | Which one of the following is/are equal to 1024.967 ₁₀ | | | $(1)1000000000.1111111101_2$ | | | $(2)1000000000.1110111111_2$ | | | $(3)10000000000.111111101_2$ | | | $(4)10000000000.11110111_2$ | | | $(5)100000000000.11101111_2$ | | 4. | Which one of the following is/are equal to 500.467 ₁₀ | | | $(1)7624.0753_8$ | | | $(2)467.0753_8$ | | | $(3)764.0753_8$ | | | $(4)467.3570_8$ | | | (5)764.357 ₈ | | 5. | Which one of the following is/are equal to 262400.0321 ₁₀ | | | $(1)20080.08_{16}$ | | | (2)40A0.18 ₁₆ | | | $(3)40100.08_{16}$ | | | (4)4A00.181 ₁₆ | | _ | (5)400A.180 ₁₆ | | 6. | 111101.11011 ₂ is equal to decimal, | | | (1)61.96875 | | | (2)60.96875 | | | (3)61.84375 | | | (4)60.83475
(5)61.84753 | | 7 | (5)61.84753 | | 7. | CAD.BAD ₁₆ is equal to | | | (1)6255.72 ₈ | | | (2)3245.7294 ₁₀ | | | (3)3245.7294 ₁₆ | od College LICT De LICT De od College A/L ICT De od College e Kandana Mazenod ndana A/L e Mazenod | | (4) 625.72 ₁₆
(5)62555.72 ₈
BED.DAD ₁₆ is equal to decimal,
(1)797.8546
(2)3053.8547
(3)3051.8546
(4)7973.8574
(5)797.8546
10110111.000100102 is equal to
(1)267.044 ₈
(2)183.044 ₁₀ | | | | |-----|---|---|--|---| | 10. | (3)B7.11A ₁₆
(4)183.125 ₂
(5)B7BA ₁₆
FED.CAD ₁₆ is equal to,
(1)111 111 101 101.101 101 101
(2)4077.3245 ₁₀
(3)7755.6255 ₈
(4)7755.5755 ₈ | 1002 | | | | 11 | $(5)4077.7755_8$ Which one of the following logic | c gate does the t | function of "CON | JII INCTION" | | 11. | | (3) XOR | (4)AND | (5)NOR | | 12. | • • | instructions in.
(2) Register Un
(5) Program Co | | (3) Control Unit. | | 13. | The generation of monthly salary (1) Batch processing. (3) Online processing. (5) Interactive processing. | (2) Rea | yees in an organi
Il time processing
nsaction processi | j. | | 14. | Who invented the Analytical Eng | gine? | | | | | | (2).Charles Bab
(5). John Presp | • | (3). John Von Neumman | | 15. | • | - | Integration(LSI) | - | | 16. | Which of the following statement (1) Vacuum tubes were used by E (2) The Pascaline is considered at (3) Computers built using vacuum (4) Electronic Numerical Integrat (5) Apple I and II are two examples | Blaise Pascal to
s a first generate
to tubes are constor and Computer | build the Pascali
ion computing de
sidered as second
er (ENIAC) was | ne.
evice
generation
built using vacuum tubes. | | 17. | A special digi | t inserted into a | sequence of digit | s for data valid | dation is called | the | |-----|--|--|--|---|------------------|---| | | | | | | | ate to fill the above | | | statement? (1)Check | (2)Sign | (3)least signif | icant (4)N | Most significant | (5)error | | 18. | | Memory (2)Re | | | | | | 19. | the first floor. | The bulb can be | | also can be tur | ned OFF by and | r and the other one at
d one of the switches
b resembles. | | | 1). an | AND gate | | | | | | | 2). an | OR gate | | | | | | | 3). an | XOR gate | | | | | | | 4). a l | NAND gate | | | | | | | 5). a l | NOT gate | | | | | | 21. | $F = (\overline{X} + \overline{Y})(\overline{X} \overline{Y}$ | (Z + W) is
2). 4
expression for the $(B + AB)$
(A + B)(A + B) | 2). <i>ĀĒ</i> | 4) 6
PR (equivalenc
B + AB
+B)AB | 5)2 | th inputs A and B is | | | | | | | | | | | $Z = AB\overline{C}$, assu
1).Tw | n number of 2-in
uming that A, B
vo 2). The | 3). $F = X$ put NAND gates and C are availablance 3) Five ND gates required | required to imple is e 4) S | ix 5)S | Seven | | | $A + A\overline{B} + A\overline{B}$ | C is equal to | | | | | | | 1).0 | 2). 1 | 3) 4 | 4) 7 | 5)2 | 2 | | 25. | (1) 00 00
(2) 11 11
(3) 00 00
(4) 00 00 | 01 01 and 11 13
01 11 and 11 13
01 01 and 10 00
01 01 and 11 13 | in 8-bit Two's co
1 01 11 respectiv
1 01 11 respectiv
0 10 01 respectiv
1 01 10 respectiv
1 01 10 respectiv | ely
ely
ely
ely | ms are | | | Structured Part(A) Answer all questions, show all the calculations when necessary, | |---| | (1)
1.(i) Draw the data life cycle(3marks) | | | | | | | | (ii).Draw the abstract model of information (3marks) | | | | | | (iii). Explain is golden rule of information (2marks) | | | | | | | | | | (iv).Draw golden rule of information in graphically with respect to value and time (2marks) | | | | | | | | | | 2.(i). What is big data(2marks) | | | | | | (ii). Who generate big data problem? (2marks) | | | | | | (iii).Give 3 characteristics of big data (3marks) | |---| | | | | | | | (iv). What are the proposed solutions for big data problem (3marks) | | | | | | | | 3. | | (i). What is cloud computing?(2marks) | | | | | | | | (ii). List three basic service models of Cloud Computing.(3marks) | | | | | | | | (iii). Give 2 benefits of cloud computing(2marks) | | | | | | | | (iv).Give 2 disadvantages of cloud computing(2marks) | | (1v).Orve 2 disadvantages of cloud computing(2marks) | | | | | | | | (v).What is digital divide(1 mark) | | | | | | | | 4. (i). What is patent(2marks) | |---| | | | | | | | (ii).What is FOSS and give 2examples for it(2marks) | | | | | | | | (iii).What is Plagiarism (2marks) | | (iii). What is I highers (Zhan is) | | | | | | | | (iv). What is piracy (2marks) | | | | | | | | | | (v). What is phishing (2marks) | | | | | | | | 5.(i).Name 5 steps in data process(2.5 marks) | | | | | | | | | | | (ii)Name the following memory hierarchy diagram(3.5marks) ## **Memory hierarchy** (iii). Write 4 steps of Fetch –Execute cycle (2marks) | Step 1: |
 | | |----------|------|--| | Step 2: | | | | Step 3: |
 | | | Sten 4:- | | | (iv). Label the steps in following diagram(2marks) **Essay** Part B ## **Answer all 3 questions** 1.a Complete the following table show the working on this paper itself(24Marks) | Decimal | Binary | Octal | Hexadecimal | |---------|-------------|----------|-------------| | | | | BAD.F63 | 100011.1100 | | | | | 100011.1100 | 7277.537 | 51966.72974 ₁₀ | | | |---------------------------|---------------|--| 1 6 1 1 4 41 6 11 : |
1 (20 1) | | b. Calculate the following and use the space given below (20 marks) | a)10000 ₂ -0101 ₂ | b)111011 ₂ +1101 ₂ | b)1111011 ₂ X111.1 ₂ | d)110110 ₂ /1011 ₂ | e)70767 ₂ +77 ₂ | |---|--|---|--|--| | , , , | | | , , , | , , , | Lf)7123 ₂ -127 ₂ | $\perp \alpha \rangle D1 \wedge B2 \dots \perp DE \dots$ | $ h \rangle D \wedge D + C \wedge E$ | 1 : 1765 /77 | | | 1/11432-1412 | g)D1AD2 ₁₆ + DL ₁₆ | h)BAD ₁₆ + CAF ₁₆ | i)765 ₈ /72 ₈ | $J)BAD_{16}/CF_{16}$ | | f)7123 ₂ -127 ₂ | g)D1AB2 ₁₆ + DE ₁₆ | \square | 1)/03 ₈ //2 ₈ | j)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DL ₁₆ | 11)BAD ₁₆ + CAF ₁₆ | 1)/03 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1//1232-12/2 | g)D1AD2 ₁₆ + DL ₁₆ | 11)BAD ₁₆ + CAF ₁₆ | 1)/63 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1//123/-121/2 | g)D1AD2 ₁₆ + DE ₁₆ | 11)BAD ₁₆ + CAF ₁₆ | 1)/63 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1//123/-121/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/63 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/63 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/63 ₈ //2 ₈ | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1272 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-1212 | g)DTAB2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/12/2-12/2 | g)D1AD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | | 1)/1232-12/2 | g)DIAD2 ₁₆ + DE ₁₆ | II)BAD ₁₆ + CAF ₁₆ | 1)/638/728 | J)BAD ₁₆ / CF ₁₆ | 2. i) Use BITWISE operators and answer the following. Use the space given below.(8marks) | a)11101 ₂ &101 ₂ | b)101101 ₂ 1100 ₂ | c)1101101 ₂ ^1011 ₂ | d) ~101010111 ₂ | |--|--|---|----------------------------| ii)(A,B,C,D)= $$\sum_{m}$$ (0,3,4,7,8,11,12,15) a). Simplify using K-map in SOP. Show grouping in SOP | CD
AB | 00 | 01 | 11 | 10 | |----------|----|----|----|----| | 00 | | | | | | 01 | | | | | | 11 | | | | | | 10 | | | | | b). Simplify using K-map in POS. Show grouping in POS | CD
AB | 00 | 01 | 11 | 10 | |----------|----|----|----|----| | 00 | | | | | | 01 | | | | | | 11 | | | | | | 10 | | | | | | | | | | | - (i) Draw the truth table for above conditions - (ii) Write a Boolean expression to represent the logic function of the above circuit in the sum of products form. - (iii) Simplify the Boolean expression using correct lows(Marks are not allocated if the name of the low is not given - (iv) Design a logic circuit for the Boolean expression you have obtained for the above part.(use only minimum number of logic gates)